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Fluorous osmium tetraoxide (FOsO4): a recoverable and reusable
catalyst for dihydroxylation of olefins
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Abstract—A fluorous osmium catalyst was firstly developed. It had been effectively used as recoverable and reusable catalyst in the
dihydroxylation of olefins.
� 2004 Elsevier Ltd. All rights reserved.
Osmium tetraoxide (OsO4) is the most reliable reagent
available for the production of cis-diols from olefins.1

Although these reactions have been widely used in the
synthesis of pharmaceuticals, fine chemicals, etc., there
are few large-scale industrial applications due to the
high cost of osmium as well as the high toxicity and
volatility of the osmium component.2 Therefore, cata-
lysts that could be readily separated from the reaction
mixture and used are the challenging in the osmium
community. A few attempts to address this issue have
been made by several groups, achieving varying levels of
success. Among these, various strategies to immobilize
the osmium tetraoxide on soluble and insoluble supports
have been applied.3

�Fluorous biphase catalysis (FBC)�,4 a new catalytic
procedure, has been developed by Horv�ath and R�abai in
1994. Since then, this new protocol has been advanced
rapidly and a mass of fluorous catalysts5 and ligands6

(especially phosphines) are known. FBC is particularly
suited for economical and green chemical processes due
to the reusable and recoverable of fluorous catalyst and
ligands. However, there are hitherto few reports about
the application of fluorous catalyst containing toxic
metals.7 Curran and co-workers have developed several
fluorous tin reagents8 with similar reactivity to that of
the parent organic reagents. In this letter, we attempted
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to apply FBC on the toxic, volatile, and expensive cat-
alyst of osmium tetraoxide.

Recently, Jacobs and co-workers have developed a new
approach to immobilize the osmium catalyst onto a
silica anchored tetrasubstituted olefin by the formation
of stable Os-diolate esters.3e;f The basic idea3f was that
these tertiary diolate esters were not hydrolyzed during
the reaction, keeping the catalyst immobilized by the
support, if the reaction conditions were not too drastic.
The cis-dihydroxylation reaction could then take place
at the remaining free binding sites of the Os center.
According to Jacobs� approach, we envisaged to use the
fluorous tetramethylethene 19 to anchor the OsO4 and
make it suitable for fluorous biphase catalysis (FBC).
An ideal catalytic recycle was proposed in Scheme 1.
The added fluorous tetramethylethene 1 was reacted
with OsO4 to form the OsVI monodiolate complex 2,
which could be reoxidized to cis-dioxo OsVIII 3 without
the release of the diol. The catalytic reaction could then
take place at the free coordination sites of Os in 3.

The fluorous osmium catalyst was prepared in the fol-
lowing procedure: OsO4 crystal (127mg, 0.5mmol) or in
4wt% of aqueous solution (3.2mL) was added in FC-77
(perfluoroalkane primarily with eight carbons) (4mL) at
room temperature, and then a solution of fluorous
tetramethylethene 1 (576mg, 0.5mmol) in FC-77 (8mL)
was added dropwise. After the addition, the reaction
mixture was stirred for another 18 h at room tempera-
ture. During the reaction, the solution turned black
indicating that OsO4 has been reduced to lower valence
osmate complex. The reaction mixture was thoroughly
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Scheme 1. A plausible reaction pathway of the fluorous osmium catalytic dihydroxylation of olefins.
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washed twice with t-BuOH/CH2Cl2 (v/v¼ 2:1, 3mL) to
remove trace of unbound OsO4. Thus, the catalyst 2 in
FC-77 solution (calcd Os: 0.042M in FC-77) was ready
for use.

The performance of the fluorous osmium catalyst
(FOsO4) in FBC was investigated using styrene as a test
substrate (Table 1). Initially, the reaction was carried
out under the standard Upjohn conditions10 (Table 1,
entry 1), using 2mol% of the FOsO4 2 in a biphasic
solvent system: t-BuOH/H2O (v/v¼ 2:1, 3mL) as
organic phase and FC-77 (2mL) as fluorous phase with
N-methylmorpholine-N-oxide (1.2 equiv) as the second-
ary oxidizing agent. After stirring 36 h at room tem-
perature, the upper organic phase was removed by a
syringe and purified using standard method to afford the
pure diol product in a quantitative yield (Table 1, entry
1, run 1). A new batch of olefin and co-oxidant dissolved
in organic solvent was added to the remaining FC-77
solution to carry out the second run of the dihydroxy-
lation. It was gratifying that the diol was isolated in 94%
yield (Table 1, entry 1, run 2), indicating that the flu-
orous catalyst was effective and reusable. However,
further runs with the remaining FC-77 solution resulted
in a dramatic decrease in the yield of the diol. The
FOsO4 catalyst leached significantly. The loss of
the catalyst may be attributed to two factors. Firstly, the
Table 1. Dihydroxylation of styrene using the fluorous osmium catalyst (FO

Ph

catalyst 2 (2 mol%), NMO

FC-77/organic phase

Entry Organic phase

Run 1 Run

1 t-BuOH/H2O (2:1) 100 94

2 t-BuOH/CH2Cl2/H2O (10:5:1) 100 98

3 Acetone/H2O (10:1) 98 92

4 t-BuOH/acetone/H2O (10:5:1) 97 100

aAll reactions were carried out using FOsO4 (2mol%) and NMO in FC-77
b Isolated yield.
fluorous osmium monodiolate underwent some hydro-
lysis to release the osmium during the reaction; sec-
ondly, the FOsO4 went into the organic phase during the
separation. In order to minimize the influence of these
two factors, the organic solvents used were varied. An
addition, the partition of FOsO4 between organic phase
and fluorous phase would be more favored at a lower
temperature of separation (from room temperature to
10 or 0 �C). As shown in Table 1, using t-BuOH/CH2Cl2/
H2O (v/v/v¼ 10:5:1) and acetone/H2O (v/v¼ 10:1) as the
organic phase, the results were similar to those using
t-BuOH/H2O (v/v¼ 2:1). The isolated yields of products
were also decreased significantly in the third run.
Fortunately, when the mixture of t-BuOH/acetone/H2O
(v/v/v¼ 10:5:1) was used as the organic phase, the diol
could be isolated in 80% yield even in the fifth run.

Representative results of the FOsO4-catalyzed dihydr-
oxylation reaction of a range of olefins are summarized
in Table 2.11 Cyclic and acyclic, exo and internal olefins
including mono-, di-, and trisubstituted aliphatic as well
as aromatic underwent the dihydroxylation smoothly at
room temperature in the fluorous biphase catalytic sys-
tem, giving moderate to excellent yields of products over
five consecutive runs. In the case of a sterically hindered
substrate (entry 3), a moderately elevated temperature
was required to afford the product in an excellent yield.
sO4) in fluorous biphase systema

Ph
OH

OH(1.2 eq.)

, rt.

Yield (%)b

2 Run 3 Run 4 Run 5

79 55 45

62 74 52

87 53 53

95 97 80

(2mL)/organic solvent (3mL) at room temperature for 36 h.



Table 2. cis-Dihydroxylation of olefins using the reusable and recyclable catalysta

R4

R3

R2

R1
catalyst 2 (2.0 mol%), NMO (1.2 eq.)

FC-77, t-BuOH/acetone/H2O (10:5:1), rt. R2

HO

R4

OH
R1 R3

Entry Olefin Diol Yield (%)b

Run 1 Run 2 Run 3 Run 4 Run 5

1 Ph
Ph

OH
OH 97 100 95 97 80

2

Ph Ph
OH

OH 100 99 94 100 99

3c

Ph HO OH

Ph 98 96 95 99 94

4
OH

OH

99 100 83 77 73

5 C4H9

C4H9

HO OH 97 95 94 93 81

6 OAc
OAc

OH

OH

97 89 95 91 90

7
Ph

Ph

Ph
Ph

OH

OH

96 92 71 58 72d

aAll reaction were carried out using FOsO4 (2mol%) and NMO in FC-77 (2mL)/organic solvent (3mL) at room temperature for 36 h.
b Isolated yield.
c The reaction was run using t-BuOH/H2O as organic phase at 60 �C.
dThe reaction time was prolonged to 48 h.
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It should be pointed out that prolonged reaction time in
the fifth run resulted in an improved yield (entry 7, runs
4 and 5).

In summary, we have successfully developed a fluorous
osmium catalyst according to the Jacobs� approach. This
was the first application of FBC with the toxic, volatile,
and expensive catalyst of OsO4. The strategy exerted the
advantages of fluorous biphasic catalysis and was
demonstrated to be effective and easy to handle. Further
optimization of the recyclability of the FOsO4 is now in
progress in our laboratory.
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